

Abstracts

Modal Characteristics of Ferromagnetic Tridisk-Coupled Resonator

T. Nagao, Z. Tanaka, H. Morishita and I. Makita. "Modal Characteristics of Ferromagnetic Tridisk-Coupled Resonator." 1995 Transactions on Microwave Theory and Techniques 43.1 (Jan. 1995 [T-MTT]): 186-193.

The Eigenvalue characteristics of a ferromagnetic tridisk-coupled (TDC) resonator are described first. A TDC resonator is made of three AlYIG ferrite disks partially scraped and mutually attached on a center conductor. The EM field is treated with a consistent theory. The eigenvalue characteristics computed with stress on the mode of $v=1$ are represented by the $Z_{10}/$ versus $Z_0/$ and $Z_1/$ versus K/μ relationships, where $Z_{10}/$ is a degenerate eigenvalue, $Z_0/$ is a wavenumber-eccentric radius product, and $Z_1/$ is a continuously varying eigenvalue dependent on K/μ , with a given value of $Z_0/$. $Z_{10}/$ is distinguished by either a single- or double-value region as a function of $Z_0/$. The computed $Z_1/$ versus K/μ graph belonging to the double-value region demonstrates a contradiction to the physical reality, which is resolved by introducing an equivalent circular resonant mode. The equivalent resonant mode is definitely identified by a degenerate eigenvalue and its modal curve with large modal separation. Experiments were carried out with various center conductors. The experimental results support the equivalent resonant mode. Finally, discussions are presented.

[Return to main document.](#)